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Abstract

Knowledgeof stability during sample transportation and changes in biomarker concentrationswithin personover timeare paramount for

proper design and interpretation of epidemiologic studies based on a single measurement of biomarker status. Therefore, we

investigated stability and intraindividual vs. interindividual variation in blood concentrations of biomarkers related to vitamin status, one-

carbonmetabolism, and the kynurenine pathway.Whole blood (EDTA and heparin, n = 12) was stored with an icepack for 24 or 48 h,

and plasma concentrations of 38 biomarkers were determined. Stability was calculated as change per hour, intraclass correlation

coefficient (ICC), and simple Spearman correlation. Within-person reproducibility of biomarkers was expressed as ICC in samples

collected 1–2 y apart from 40 postmenopausal women and in samples collected up to 3 y apart from 551 patients with stable angina

pectoris. Biomarker stabilitywassimilar inEDTAandheparinblood.Most biomarkerswereessentially stable, except for cholineand total

homocysteine (tHcy), which increased markedly. Within-person reproducibility in postmenopausal women was excellent (ICC > 0.75)

for cotinine, all-trans retinol, cobalamin, riboflavin, a-tocopherol, Gly, pyridoxal, methylmalonic acid, creatinine, pyridoxal 5#-phosphate,

and Ser; was good to fair (ICC of 0.74–0.40) for pyridoxic acid, kynurenine, tHcy, cholecalciferol, flavin mononucleotide, kynurenic acid,

xanthurenic acid, 3-hydroxykynurenine, sarcosine, anthranilic acid, cystathionine, homoarginine, 3-hydroxyanthranilic acid, betaine, Arg,

folate, total cysteine, dimethylglycine, asymmetric dimethylarginine, neopterin, symmetric dimethylarginine, and Trp; and poor (ICC of

0.39–0.15) for methionine sulfoxide, Met, choline, and trimethyllysine. Similar reproducibilities were observed in patients with coronary

heart disease. Thus, most biomarkers investigated were essentially stable in cooled whole blood for up to 48 h and had a sufficient

within-person reproducibility to allow one-exposure assessment of biomarker status in epidemiologic studies. TheWestern Norway B

Vitamin Intervention Trial was registered at clinicaltrials.gov as NTC00354081. J. Nutr. 144: 784–790, 2014.

Introduction

Modern analytical technologies, in particular methods based on
MS, allow accurate and precise measurement of a large number

of biomarkers in various matrices, including serum and plasma.
In addition, multiplexing capabilities, high-throughput, and low-
sample volume consumption of methods based on MS open new
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research possibilities for large epidemiologic studies of disease
risk using precious specimens stored in biobanks (1–3).

Most prospective cohort studies collected 1 blood sample for
each individual and thus rely on a single measurement to obtain
biomarker status. Therefore, it is critical that the within-person
variance in biomarker concentrations caused by sample han-
dling and storage, as well as natural fluctuations, is small relative
to the between-person variance. This reliability can be expressed
as the intraclass correlation coefficient (ICC),11 which is the ratio
of within-person variance/total variance (4); therefore, ICC also
accounts for preanalytical and analytical variance components.

For large biobanks, centralized sample processing is recom-
mended to reduce cost and secure uniform and optimal sample
handling (5). This procedure implies transportation of whole
blood to the central facility responsible for separation of serum/
plasma and subsequent storage at low temperature. Many but
not all clinical chemistry parameters are essentially stable during
transportation at 4�C for up to 36 h (6), but such stability has to
be investigated for each individual analyte to assess potential
bias in biomarker studies caused by preanalytical variability.
Conversely, storage is a minor source of error and bias, because a
range of analytes, including labile molecules, are stable when
stored under conditions currently recommended (i.e., at 280�C
or below) (5).

We investigated the stability of 38 biomarkers related to
vitamin status, one-carbon metabolism, and the kynurenine
pathway in whole-blood samples from 12 men and women for
up to 48 h under conditions mimicking those of transportation
to the central biobank. We also assessed the reproducibility over
a period of 1–2 y of the same biomarkers among 40 postmen-
opausal women enrolled in the Nurses�Health Study (NHS). Be-
cause biomarker concentrations may vary according to lifestyle,
nutritional, and clinical status, we also assessed the reproducibility
of most biomarkers over 38 mo among 551 patients who had
undergone coronary angiography for suspected coronary artery
disease.

Participants and Methods

Study populations and sample collection. Analyte stability was

assessed from blood samples collected in EDTA and sodium heparin

Vacutainers from 12 healthy volunteers (50% male) aged 24–56 y

(median of 36 y). Samples from each individual were collected in 3
Vacutainers. The first sample was centrifuged immediately and then

divided into aliquots and stored in a liquid nitrogen freezer (#2130�C).
The second and third samples were stored with ice packs in Styrofoam

containers for 24 and 48 h, respectively, before being processed and
frozen.

We investigated the within-person reproducibility over time among

postmenopausal women, aged 51–68 y (median of 62 y), enrolled in the
NHS. The NHS is an ongoing cohort study that began in 1976 with

121,700 female registered nurses (7). Details about the blood collections

in the NHS have been published previously (8). Briefly, in 1989–1990,

32,836 participants arranged to have their blood collected in 2 15-mL
sodium heparin tubes. The tubes were placed in Styrofoam containers

with an icepack (temperature of;4�C) and shipped via overnight mail to

the central laboratory, where plasma was immediately separated and

stored in liquid nitrogen freezers. A subset of 390 postmenopausal
participants who returned a blood sample in 1989–1990 provided 2

additional blood samples over the following 1–2 y. For the current

investigation, we randomly selected 40 women who provided at least 2

blood samples, each donated after fasting at least 8 h. The NHS was

approved by the Committee on the Use of Human Subjects in Research at
Harvard School of Public Health and Brigham and Women�s Hospital.

Within-person reproducibility was also investigated in a subset of

patients enrolled in the Western Norway B Vitamin Intervention Trial

(WENBIT) study. The patients had undergone coronary angiography for
suspected coronary artery disease between 1999 and 2004. Details of the

WENBIT study have been published previously (9). For the current

investigation, we selected patients (n = 633) with stable angina recruited

at the Haukeland University Hospitals in Bergen, Norway, who were
allocated to receiving placebo and had data at baseline and after

1 month, 1 y, and 38mo of follow-up. Their median (range) age was 62.8

y (31.8–84.7 y), and 75.8%were males. The number of participants with
analyte data at all 4 time points varied somewhat by analyte, ranging

from 402 to 551.Whole blood was collected into EDTAVacutainer tubes

and immediately centrifuged, and EDTA plasma was stored within

30min at280�C until analysis. TheWENBITstudy was approved by the
Regional Committee for Medical and Health Research Ethics, the Data

Inspectorate, and the Norwegian Directorate of Health and is registered

at clinicaltrials.gov as NCT00354081.

Laboratory analyses. Riboflavin, flavin mononucleotide, pyridoxal

5#-phosphate (PLP), pyridoxal, pyridoxic acid, kynurenic acid, anthranilic
acid, 3-hydroxykynurenine, xanthurenic acid, 3-hydroxyanthranilic acid

(HAA), neopterin, cotinine (10), free choline, betaine, dimethylglycine,

creatinine, methionine sulfoxide, Arg, asymmetric dimethylarginine

(ADMA), symmetric dimethylarginine (SDMA), trimethyllysine (11),
all-trans retinol (vitamin A), cholecalciferol (25-hydroxyvitamin D-3;

vitamin D), and a-tocopherol (vitamin E) (12) were determined by liquid

chromatography (LC)-MS/MS, and methylmalonic acid (MMA), total
homocysteine (tHcy), total cysteine, Met, Ser, Gly, cystathionine,

sarcosine, Trp, and kynurenine were determined by GC-MS/MS (2,13).

The kynurenine/Trp ratio (KTR) was calculated by dividing the plasma

concentration of kynurenine (in nanomoles per liter) by the concentra-
tion of Trp (in micromoles per liter). Cobalamin (vitamin B-12) (14) and

folate (15) were determined by microbiologic methods. All analyses were

performed in the laboratory of Bevital, and the laboratory staff was

unaware of the sample identities.

Statistical analyses. Biomarker concentrations in plasma are presented
as geometric means with 95% CIs. We examined the within-day

precision of the methods for each analyte using blinded replicate samples

from 3 large quality-control plasma pools created using discarded

plasma from blood donation centers (8 replicates from 1 EDTA plasma
pool and 4 replicates each from 2 different heparin plasma pools).

Precision was expressed as analytical CV, which in this context is defined

as the SD in percentage of the mean. Specifically, we calculated the CV

among samples from the same quality-control pool and then averaged
CVs across the 3 pools. We calculated changes in concentrations during

storage with an icepack after normalizing the value to percentage of the

baseline (time 0) concentration, which was defined as 100%. Because

storage effects were investigated at only 3 time points (0, 24, and 48 h),
degradation and accumulation kinetics were not modeled according to

exponential functions (16) or by segmented regression but were

summarized in terms of percentage changes (SD) per hour as obtained
by simple linear regression. Storage effects were also evaluated by

calculating the ICCs, defined as the between-person variance divided by

the total variance (4), across all 3 time points for each analyte, using

ln-transformed values. To assess whether participant ranking by analyte
concentration changed according to storage, correlation of values

obtained at 24 and 48 h with baseline values were calculated using the

Spearman test (17). Within-person reproducibility for each analyte was

assessed by determination of ICC (95% CI) from repeated participant
samples using ln-transformed values and a random-effects mixed model

with participant identification as the random variable. An ICC < 0.40 is

considered as poor reproducibility, 0.40–0.75 as fair-to-good reproduc-
ibility, and $0.75 as excellent reproducibility (4).

A sample size of 40 people with 2 samples per person provides

excellent power to estimate relatively high ICCs (4), which are of most

11 Abbreviations used: ADMA, asymmetric dimethylarginine; HAA, 3-hydroxy-

anthranilic acid; ICC, intraclass correlation coefficient; KTR, kynurenine/Trp

ratio; MMA, methylmalonic acid; NHS, Nurses� Health Study; PLP, pyridoxal

5#-phosphate; SDMA, symmetric dimethylarginine; tHcy, total homocysteine;

WENBIT, Western Norway B Vitamin Intervention Trial.
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scientific interest, e.g., the confidence interval width will be less than60.2

for an ICC $ 0.65. However, this sample size provides only modest

power to estimate lower ICCs, e.g., the CI width for an estimated ICC
of 0.35 will be 60.28, indicating that a true ICC as high as 0.63 is

consistent with the data. Thus, low ICC estimates in the NHS

population should be interpreted cautiously because they could reflect

a chance finding of low between-person variability among the selected
40 participants.

Approximate estimates of the within- and between-person CVs

were determined by taking the square root of the within- and between-

person variance components from the random-effects mixed model on
the ln-transformed scale (4). The program R version 2.15.1 (18) was

used for statistical analyses, and the package ‘‘ICC’’ was used to

calculate ICC.

Results and Discussion

Principal findings. We investigated stability of 38 biomarkers
related to vitamin status, one-carbon metabolism, and the
kynurenine pathway in chilled whole blood for up to 48 h and
within-person reproducibility of biomarkers over 1–2 y in
healthy postmenopausal women (NHS) and over 38 mo (for 32
biomarkers) in patients with stable coronary heart disease
(WENBIT study). Most biomarkers were essentially stable,
although pyridoxal, choline, tHcy, Arg, and HAA (in EDTA
plasma) changed >1% per hour during storage. Within-person
reproducibilities obtained from the NHS samples was fair to
excellent for most (34 of 38) biomarkers with an ICC$ 0.75 for
PLP, pyridoxal, riboflavin, cobalamin, Ser, Gly, all-trans retinol,
a-tocopherol, MMA, creatinine, and cotinine and an ICC < 0.40
for choline, Met, methionine sulfoxide, and trimethyllysine.
Similar within-person reproducibilities were obtained from the
WENBIT samples.

Stability. Among the biomarkers investigated, most were stable
in cooled whole blood (i.e., change <1% per hour) (Fig. 1;

Supplemental Fig. 1). The fat-soluble vitamins were stable in
cooled blood (Fig. 1) as demonstrated previously for all-trans
retinol and less so for a-tocopherol (19). tHcy and choline
increased markedly, and for choline, the increase was more
pronounced in heparin (Supplemental Fig. 1) than EDTA blood
(Fig. 1). This is in agreement with published results and is
explained by egress of homocysteine from intact blood cells (20)
and enzymic conversion of phosphatidylcholine to free choline
(21) catalyzed by phospholipase D, a calcium-dependent enzyme
(22) inhibited by EDTA. Pyridoxal and Arg declined markedly,
which for pyridoxal may reflect cellular uptake (23). HAA is
known be unstable (24), and the concentration decreased
markedly, in particular in the presence of EDTA. Otherwise,
stability was similar in EDTA (Fig. 1) and heparin blood
(Supplemental Fig. 1).

Unstable biomarkers (choline, tHcy, Arg) had low ICC (<0.1)
across storage time from 0 to 48 h. However, for choline and
tHcy in particular, values at 24 and 48 h correlated well (r $
0.5) with values at baseline (Fig. 1; Supplemental Fig. 1). This is
explained by a parallel increase in blood concentrations as a
function of time across samples (data not shown) and implies
that participants were equally ranked by concentrations of these
biomarkers in samples subjected to similar processing, although
the absolute value of the biomarker changed markedly after a
24–48 h delay in processing. If there are variable transportation
time and temperatures of whole blood in a study, this may bias
results involving choline and tHcy.

We previously investigated stability in isolated sera and
plasmas at room temperature over days or during storage at
220�C for decades for most biomarkers included in the present
study (25). In general, most biomarkers that were stable under
these conditions are also stable in chilled whole blood, but there
are notable exceptions (summarized in Supplemental Fig. 2).
The rapid degradation of folate in EDTA plasma (26) was not

FIGURE 1 Stability of biomarkers in

EDTA blood stored in a Styrofoam con-

tainer with an icepack for 24 or 48 h.

Biomarkers (pyridoxal, choline, total ho-

mocysteine, Arg, and hydroxyanthranilic

acid) that changed substantially over time

(left panel) had a low intraclass correlation

coefficient (,0.2) across the storage time

(middle panel), but for some (choline and

total homocysteine), concentrations at 24

or 48 h still showed a fair-to-good (r .
0.4) correlation with values at time 0

(right panel). This reflects a parallel in-

crease in concentrations over time and

implies that the ranking of the values at

fixed time points was maintained. ADMA

decreased moderately during storage, but

both intraclass correlation coefficient and

ranking were low, which is explained by

the low between-person variability for

ADMA. n = 12. ADMA, asymmetric

dimethylarginine; FMN, flavin mononucle-

otide; SDMA, symmetric dimethylarginine.
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observed in cold EDTA blood (Fig. 1; Supplemental Fig. 1).
Furthermore, PLP is dephosphorylated to pyridoxal in serum,
citrate plasma, and heparin plasma but not EDTA plasma at
room temperature and in frozen serum, leading to a concurrent
increase in pyridoxal (25). However, in cold blood, PLP was
stable and pyridoxal decreasing on storage (Fig. 1; Supple-
mental Fig. 1). tHcy is stable in serum and plasma, and Arg is
stable in plasma and slightly increasing in serum (25) in
contrast to the marked changes in these biomarkers observed in
whole blood, which probably reflect cellular transport (20).
The marked decrease in Met and its recovery as methionine
sulfoxide that occur in serum samples during prolonged
storage at 220�C was not observed in serum, plasma at
room temperature (25), or whole blood (Fig. 1; Supplemental
Fig. 1).

Within-person reproducibility in NHS participants. The
quality control CVs, medians, and Spearman correlations of values
at 2 visits, within-person and between-person CVs (percentage),
and ICCs for the 38 biomarkers measured in 40 NHS samples are
listed inTable 1. The within-person reproducibility over 1–2 y was
excellent (ICC range of 0.95–0.75) for the following biomarkers
(in decreasing order of ICCs): cotinine, all-trans retinol, cobala-
min, riboflavin, a-tocopherol, Gly, pyridoxal, MMA, creatinine,
PLP, and Ser. Within-person reproducibility was good to fair (ICC
range of 0.74–0.40) for pyridoxic acid, kynurenine, tHcy, vitamin
D, flavin mononucleotide, kynurenic acid, xanthurenic acid,
3-hydroxykynurenine, sarcosine, KTR, anthranilic acid, cystathi-
onine, homoarginine, HAA, betaine, Arg, folate, total cysteine,
dimethylglycine, ADMA, neopterin, SDMA, and Trp and was
poor (ICC range of 0.39–0.15) for methionine sulfoxide, Met,
choline, and trimethyllysine (Table 1).

The ICC values and Spearman correlation coefficients
between the first and second collection showed similar variation
across analytes (Supplemental Fig. 3). Furthermore, the ICC was
0.71 for tHcy and 0.29 for choline (Table 1), despite a
substantial increase in both tHcy and choline during storage as
also indicated by higher concentrations of tHcy and choline than
expected (27) in healthy women. Together, these observations
emphasize the advantage of uniform preanalytical sample
handling, in particular for unstable analytes.

A few biomarkers, including total cysteine, Trp, ADMA, and
SDMA, with low within-person CVs of <10% had only
moderate ICCs (<0.6) because the between-person CV was
low (Table 1). The low interindividual biologic variation of
ADMA has been reported previously by others (28) who have
emphasized the importance of accurate and precise analytical
methods to obtain reproducible results that allow meta-analyses
and implementation of ADMA in clinical diagnostics.

Within-person reproducibility in WENBIT participants. The
ICCs and the variance components for most analytes studied in
NHS samples were also assessed among WENBIT participants
(n = ;550) donating samples at 4 visits for up to 38 mo (Table
2). The ICCs in the WENBITwere similar to those in the NHS,
although somewhat lower for most B vitamins, amino acids, and
kynurenines and equal or even higher than in NHS samples for
choline, betaine, dimethylglycine, MMA, SDMA, creatinine,
KTR, and neopterin (Supplemental Fig. 4). For choline, the
relatively high ICC in the WENBIT probably reflects optimal
sample handling (as indicated by a geometric mean for choline of
;10 mmol/L) (Table 2). Higher prevalence of reduced renal
function, cellular immune activation, metabolic syndrome,
and coronary heart disease in WENBIT patients than in

healthy NHS participants might have increased the between-
person CVs for creatinine, SDMA (29), MMA (30), neopterin,
KTR (31,32), betaine (33), or dimethylglycine (34), thus
increasing the ICC.

We also investigated the change in ICC in the WENBIT
samples for each analyte by narrowing the time period
between sample collections from 38 mo to 1 y or 28 d. The
ICC values for most biomarkers were remarkably stable across
different periods, and only 4 biomarkers increased >10%
when reducing the time span from 38 mo to 28 d, i.e., folate
(from 0.51 to 0.71), ADMA (from 0.51 to 0.60), tHcy (from
0.72 to 0.85), and cystathionine (from 0.60 to 0.68) (Supple-
mental Fig. 5).

Comparison with published reliability data. Reproducibil-
ity over time has been assessed previously in healthy individ-
uals for some biomarkers that were investigated in the present
study. Compared with reproducibility data obtained among
the NHS participants, similar ICC values for Arg, Met, and
Trp and lower values for Gly and Ser have been reported from
a study based on European Prospective Investigation into
Cancer and Nutrition–Potsdam samples collected 4 mo apart
(35). One study based on samples collected over 30 mo
demonstrated similar ICC for tHcy (36), whereas a higher ICC
of 0.90 for tHcy over 2–5 y was reported from a European
Prospective Investigation into Cancer and Nutrition–Dutch
study, which also reported lower reproducibility for folate,
vitamin B-6, vitamin B-12, and a-tocopherol (37). A recent
study on intra-individual variations of 19 biomarkers related
to one-carbon metabolism (38) demonstrated similar repro-
ducibility for most biomarkers as we observed for NHS
participants, except for better reproducibility for choline and
DMG and lower for folate, cobalamin, tHcy, and cystathio-
nine. Reproducibility over 2–4 y has been investigated
previously for fat-soluble vitamins in postmenopausal women
participating in the NHS (8), whereas similar ICCs were
reported for a-tocopherol and 25-hydroxyvitamin D and
lower ICC for all-trans retinol compared with the values
obtained in the present study. Thus, our results are essentially
in agreement with published data on within-person reproduc-
ibility for 21 biomarkers, which demonstrate fair-to-excellent
reproducibility.

In conclusion, most biomarkers investigated were essentially
stable in whole blood stored with ice for up to 48 h, and
biomarkers that were stable under these conditions were
generally found to be stable in plasma and serum, with notable
exceptions for folate (in EDTA plasma stored for days at 23�C)
and PLP (in heparin plasma for days at 23�C) (Supplemental Fig.
2). Biomarkers that are unstable in whole blood, such as choline
and tHcy, maintain ranking only if samples are undergoing uni-
form preanalytical handling. Thus, biomarker stability should
be assessed under conditions close to those occurring during
sample transportation and handling.

Most biomarkers also have a fair-to-excellent within-
person reproducibility over 1–2 y in healthy postmenopausal
women and a similar reproducibility over 38 mo in patients
with stable angina pectoris. However, some differences in
reproducibility were noted between healthy women and patients
with coronary artery disease. Such differences may partly be
explained by increased between-person variance for biomarkers
reflecting clinical conditions that are common among cardio-
vascular patients, such as renal dysfunction, inflammation, and
metabolic syndrome. Consequently, a precise or valid correction
of regression dilution bias in epidemiologic research based on a
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single biomarker measurement (39) should be assessed using
ICC values determined from a population with demographic
and clinical characteristics similar to those of the study
population.

Biomarker stability during sample collection, transportation,
and storage reflects the chemical structure of the actual com-
pound. Low stability is a major source of preanalytical varia-
bility, which should be minimized by adequate sample handling

TABLE 1 Concentrations and within-person reproducibility of biomarkers in plasma samples collected at 2 time points 1–2 y apart
from 40 postmenopausal women in the Nurses� Health Study1

Geometric mean (95% CI)

Biomarker QC CV2 First collection Second collection P3 r Within-person CV4 Between-person CV4 ICC (95% CI)5

% % %

B vitamins and one-carbon metabolites

Folate, nmol/L 5.5 28.5 (22.5, 36.1) 31.4 (24.5, 40.2) 0.37 0.55 47.3 58.9 0.61 (0.37, 0.77)

Pyridoxal 5#-phosphate, nmol/L 3.3 57.4 (45.0, 73.2) 59.1 (46.4, 75.2) 0.73 0.66 36.3 66.3 0.77 (0.61, 0.87)

Pyridoxal, nmol/L 5.6 25.1 (19.2, 32.8) 26.5 (20.7, 33.8) 0.51 0.66 35.9 71.5 0.80 (0.65, 0.89)

Pyridoxic acid, nmol/L 6.5 37.7 (29.2, 48.6) 40.5 (32.3, 50.8) 0.41 0.51 38.7 64.8 0.74 (0.56, 0.85)

Riboflavin, nmol/L 7.4 26.2 (21.7, 31.5) 28.5 (23.7, 34.2) 0.08 0.82 21.3 54.0 0.87 (0.76, 0.93)

Flavin mononucleotide, nmol/L 8.8 4.67 (4.11, 5.31) 5.10 (4.56, 5.71) 0.06 0.74 20.9 31.5 0.69 (0.49, 0.83)

Cobalamin, pmol/L 2.7 469 (425, 518) 461 (414, 514) 0.53 0.87 11.6 30.2 0.87 (0.77, 0.93)

Choline, mmol/L 3.7 16.4 (15.5, 17.4) 15.3 (14.6, 16.2) 0.05 0.33 14.8 9.4 0.29 (20.02, 0.55)6

Betaine, mmol/L 4.1 36.1 (33.9, 38.5) 36.4 (33.7, 39.3) 0.82 0.64 13.5 17.5 0.63 (0.40, 0.79)

Dimethylglycine, mmol/L 7.8 3.05 (2.78, 3.35) 2.96 (2.73, 3.22) 0.48 0.53 18.4 20.5 0.55 (0.30, 0.74)

Sarcosine, mmol/L 4.6 1.09 (0.96, 1.25) 1.13 (1.00, 1.26) 0.57 0.73 21.9 32.0 0.68 (0.48, 0.82)

Amino acids

Total homocysteine, mmol/L 6.5 11.1 (10.2, 12.0) 11.0 (10.1, 12.0) 0.87 0.74 14.2 22.4 0.71 (0.52, 0.84)

Total cysteine, mmol/L 5.7 325 (312, 338) 330 (318, 344) 0.34 0.49 8.1 9.2 0.56 (0.31, 0.74)

Cystathionine, mmol/L 3.1 0.15 (0.14, 0.17) 0.16 (0.14, 0.18) 0.49 0.53 21.0 28.8 0.65 (0.43, 0.80)

Met, mmol/L 1.9 25.4 (24.2, 26.6) 26.1 (25.0, 27.2) 0.30 0.31 11.1 8.4 0.36 (0.06, 0.60)

Methionine sulfoxide, mmol/L 8.2 1.07 (0.99, 1.15) 1.04 (0.96, 1.13) 0.58 0.32 19.0 14.5 0.37 (0.07, 0.61)

Ser, mmol/L 2.5 116 (110, 122) 111 (105, 117) 0.01 0.71 8.7 15.2 0.76 (0.59, 0.86)

Gly, mmol/L 2.8 304 (280, 330) 290 (267, 314) 0.03 0.82 10.2 23.1 0.84 (0.71, 0.91)

Arg, mmol/L 4.8 48.2 (41.5, 56.1) 50.1 (44.1, 57.0) 0.52 0.67 26.9 34.3 0.62 (0.39, 0.78)

Trp, mmol/L 3.3 67.1 (64.6, 69.7) 67.1 (64.0, 70.4) 0.99 0.50 9.8 9.2 0.47 (0.19, 0.68)

Kynurenines

Kynurenine, mmol/L 2.2 1.55 (1.45, 1.67) 1.59 (1.49, 1.69) 0.43 0.70 11.5 18.0 0.71 (0.52, 0.84)

3-Hydroxykynurenine, nmol/L 3.7 34.2 (31.4, 37.2) 36.0 (32.8, 39.6) 0.14 0.65 15.8 23.2 0.68 (0.48, 0.82)

Kynurenic acid, nmol/L 4.6 44.7 (38.8, 51.5) 47.8 (42.0, 54.4) 0.21 0.65 23.6 35.1 0.69 (0.49, 0.82)

Xanthurenic acid, nmol/L 7.3 8.45 (6.97, 10.2) 9.08 (7.63, 10.81) 0.32 0.68 32.2 47.4 0.68 (0.48, 0.82)

Anthranilic acid, nmol/L 4.8 15.7 (14.0, 17.7) 17.0 (15.4, 18.8) 0.07 0.63 19.8 28.2 0.67 (0.46, 0.81)

3-Hydroxyanthralinic acid, nmol/L 6.9 26.5 (23.8, 29.6) 29.0 (26.0, 32.2) 0.05 0.63 20.5 27.3 0.64 (0.42, 0.79)

Fat-soluble vitamins

All-trans retinol, mmol/L 3.8 2.30 (2.16, 2.45) 2.32 (2.18, 2.45) 0.62 0.82 6.8 17.7 0.87 (0.77, 0.93)

Cholecalciferol, nmol/L 7.0 68.5 (62.9, 74.7) 69.3 (63.6, 75.4) 0.75 0.66 14.4 22.4 0.71 (0.51, 0.83)

a-Tocopherol, mmol/L 2.4 35.6 (31.9, 39.6) 37.7 (33.7, 42.1) 0.04 0.75 12.7 32.1 0.86 (0.76, 0.93)

Others

Methylmalonic acid, mmol/L 4.9 0.16 (0.15, 0.18) 0.17 (0.16, 0.18) 0.11 0.78 12.0 22.9 0.79 (0.63, 0.88)

Homoarginine, mmol/L 6.7 1.59 (1.41, 1.78) 1.65 (1.47, 1.85) 0.43 0.57 21.3 28.8 0.65 (0.43, 0.80)

ADMA, mmol/L 7.2 0.61 (0.58, 0.63) 0.61 (0.59, 0.64) 0.69 0.47 8.6 9.5 0.55 (0.30, 0.74)

SDMA, mmol/L 5.8 0.60 (0.58, 0.63) 0.60 (0.58, 0.63) 0.96 0.51 8.7 8.7 0.50 (0.23, 0.70)

Creatinine, mmol/L 2.8 71.4 (67.8, 75.3) 72.9 (69.5, 76.4) 0.23 0.74 7.4 13.7 0.77 (0.62, 0.87)

Trimethyllysine, mmol/L 6.3 0.63 (0.56, 0.72) 0.65 (0.58, 0.73) 0.81 0.38 34.7 14.6 0.15 (20.16, 0.44)6

KTR, nmol/mmol 23.1 (21.6, 24.8) 23.6 (21.9, 25.5) 0.49 0.65 13.1 18.8 0.67 (0.47, 0.81)

Neopterin, nmol/L 6.8 15.3 (13.5, 17.3) 16.7 (15.1, 18.5) 0.11 0.53 24.6 25.7 0.52 (0.26, 0.71)

Cotinine,7 nmol/L 2.2 2.21 (1.11, 4.40) 2.48 (1.24, 4.98) 0.27 0.44 46.9 211.4 0.95 (0.91, 0.97)

1 ADMA, asymmetric dimethylarginine; ICC, intraclass correlation coefficient; KTR, kynurenine/Trp ratio; QC, quality control; SDMA, symmetric dimethylarginine.
2 From 16 blinded replicates from 3 quality-control plasma pools.
3 Paired t test comparing geometric mean at first vs. second blood collection.
4 Within- and between-person CVs were estimated by taking the square root of the within- and between-person variance components from random-effects mixed model on the

ln-transformed scale (4).
5 Calculated using ln-transformed analyte values.
6 A lower value for 95% CI , 0 is often explained by the intraindividual variation being large compared with the interindividual variation and indicates that the computed ICC is not

significantly different from 0.
7 Cotinine values below the detection limit (1 nmol/L) were set to 1.
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based on stability data for each biomarker. For stable bio-
markers determined by a precise method, within-person repro-
ducibility mainly reflects the biologic variability over time due to
changing pathophysiologic processes and altered lifestyle,
including nutrition. Knowledge on within-person reproducibil-
ity is paramount for adequate study design, data interpretation,
and statistical analysis, including adjustment for important
confounders.
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Supplemental Figure 1. Stability of biomarkers in heparin blood stored in a 
Styrofoam container with an icepack for 24 or 48 hours. The results were 
essentially the same as for EDTA blood. See legend to figure 1. Notable differences 
were a more pronounced accumulation of choline (which proceeds at a lower rate in 
the presence of EDTA) and less decrease of pyridoxal, arginine and 
hydroxyanthranilic acid. Non-standard abbreviations: ADMA, asymmetric 
dimethylarginine; SDMA, symmetric dimethylarginine. N=12. 
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Supplemental Figure 2. A qualitative comparison of biomarker stability in 
different matrices and temperatures. The stability in cooled (about 4ºC) EDTA 
blood (EB) and heparin blood (HB) shown in the two columns to the right are based 
on data from the present study (N=12), and are compared to stability of the same 
biomarkers in serum (S), EDTA-plasma (EP), heparin-plasma (HP), and citrate 
plasma (CP) at room temperature for days or in frozen serum (S) for 29 years 
(N=650), as detailed in a previous publication (25). Green colour indicates no 
change, red increase and blue decrease in biomarker concentration over time. Blank 
cells indicate no data. Non-standard abbreviations: FAD, flavin adenin dinucleotide; 
ADMA, asymmetric dimethylarginine; SDMA, symmetric dimethylarginine. 
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Supplemental Figure 3. Comparison of within person reproducibility in terms of ICCs with correlations given as Spearman coefficients (ρ) for 
biomarkers in plasma samples collected 1 – 2 years apart from postmenopausal women in the NHS. ICC, intraclass correlation coefficient, was 
calculated using natural log-transformed analyte values. Data are taken from Table 1. Non-standard abbreviations: DMG, dimethylglycine; ADMA, 
asymmetric dimethylarginine; SDMA, symmetric dimethylarginine. N=40.
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Supplemental Figure 4. Comparison of ICC-values for plasma biomarkers 
among postmenopausal healthy women (NHS, N=40) and cardiovascular 
patients (WENBIT, N=396-551). ICCs (intraclass correlation coefficient) with 95 % 
CI were calculated using natural log-transformed analyte values. Data are taken from 
Tables 1 and 2. Non-standard abbreviations: ADMA, asymmetric dimethylarginine; 
SDMA, symmetric dimethylarginine; KTR, Kynurenine/Tryptophan ratio. 
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Supplemental Figure 5. Within person reproducibility in terms of ICC-values over 
different time periods for biomarkers in samples collected from cardiovascular 
patients (WENBIT). ICC, intraclass correlation coefficient, using natural log-
transformed analyte values, was calculated from 4 samples from each subject 
collected over 38 months (Blue), for 3 samples collected over 1 year (Red) and 2 
samples collected over 28 days (Green). The number of patients with complete data 
set varied from 402 – 551.  Abbreviations: PLP, pyridoxal 5’-phosphate, Trp, 
tryptophan; vitamin A, all trans retinol; vitamin E, alpha-tocopherol; ADMA, 
asymmetric dimethylarginine; SDMA, symmetric dimethylarginine; KTR, 
Kynurenine/Tryptophan ratio.


